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Abstract: We study the minimal unitary representations of non-compact groups and

supergroups obtained by quantization of their geometric realizations as quasi-conformal

groups and supergroups. The quasi-conformal groups G leave generalized light-cones de-

fined by a quartic norm invariant and have maximal rank subgroups of the formH×SL(2,R)

such that G/H × SL(2,R) are para-quaternionic symmetric spaces. We give a unified for-

mulation of the minimal unitary representations of simple non-compact groups of type A2,

G2, D4,F4, E6, E7, E8 and Sp (2n,R). The minimal unitary representations of Sp (2n,R)

are simply the singleton representations and correspond to a degenerate limit of the uni-

fied construction. The minimal unitary representations of the other noncompact groups

SU (m,n), SO (m,n) , SO∗(2n) and SL (m,R) are also given explicitly.

We extend our formalism to define and construct the corresponding minimal representations

of non-compact supergroups G whose even subgroups are of the form H×SL(2,R). If H is

noncompact then the supergroup G does not admit any unitary representations, in general.

The unified construction with H simple or Abelian leads to the minimal representations of

G(3), F (4) andO Sp (n|2,R) (in the degenerate limit). The minimal unitary representations

of O Sp (n|2,R) with even subgroups SO(n) × SL(2,R) are the singleton representations.

We also give the minimal realization of the one parameter family of Lie superalgebras

D (2, 1;σ).
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1. Introduction

Inspired by the work on spectrum generating Lie algebras by physicists [1] Joseph in-

troduced the concept of minimal unitary realizations of Lie algebras. It is basically de-

fined as a realization that exponentiates to a unitary representation of the corresponding

noncompact group on a Hilbert space of functions depending on the minimal number

of coordinates. Joseph gave the minimal realizations of the complex forms of classical

Lie algebras and of G2 in a Cartan-Weil basis [2, 3]. The existence of the minimal uni-

tary representation of E8(8) within the framework of Langland’s classification was first

proved by Vogan [4] . Later, the minimal unitary representations of all simply laced

groups, were studied by Kazhdan and Savin [5], and Brylinski and Kostant [6 – 9]. Gross
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and Wallach studied the minimal representations of quaternionic real forms of exceptional

groups [10]. For a review and the references on earlier work on the subject in the math-

ematics literature prior to 2000 we refer the reader to the review lectures of Jian-Shu

Li [11].

The idea that the theta series of E8(8) and its subgroups may describe the quantum

supermembrane in various dimensions [12], led Pioline, Kazhdan and Waldron [13] to re-

formulate the minimal unitary representations of simply laced groups [5]. In particular,

they gave explicit realizations of the simple root (Chevalley) generators in terms of pseudo-

differential operators for the simply laced exceptional groups, together with the spherical

vectors necessary for the construction of modular forms.

Motivated mainly by the idea that the spectra of toroidally compactified M/superstring

theories must fall into unitary representations of their U-duality groups and towards the

goal of constructing these unitary representations Günaydin, Koepsell and Nicolai first

studied the geometric realizations of U-duality groups of the corresponding supergrav-

ity theories [14]. In particular they gave geometric realizations of the U-duality groups

of maximal supergravity in four and three dimensions as conformal and quasiconformal

groups, respectively. The realization of the 3-dimensional U-duality group E8(8) of maxi-

mal supergravity given in [14] as a quasiconformal group that leaves invariant a generalized

light-cone with respect to a quartic norm in 57 dimensions is the first known geometric

realization of E8. An E7(7) covariant construction of the minimal unitary representa-

tion of E8(8) by quantization of its geometric realization as a quasi-conformal group [14]

was then given in [16]. The minimal unitary realization of the 3 dimensional U-duality

group E8(−24) of the exceptional supergravity [27] by quantization of its geometric real-

ization as a quasiconformal group was subsequently given in [15]. By consistent trunca-

tion the quasiconformal realizations of the other noncompact exceptional groups can be

obtained from those of E8(8) and E8(−24). Apart from being the first known geometric

realization of the exceptional group of type E8 the quasiconformal realization has some

remarkable features. First, there exist different real forms of all simple groups that ad-

mit realizations as quasiconformal groups.1 Therefore, the quasiconformal realizations

give a geometric meaning not only to the exceptional groups that appear in the last

row of the famous Magic Square [28] but also extend to certain real forms of all simple

groups.

Another remarkable property of the quasiconformal realizations is the above mentioned

fact that their quantization leads, in a direct and simple manner, to the minimal unitary

representations of the corresponding noncompact groups [16, 15, 17].

Classification of the orbits of the actions of U-duality groups on the BPS black hole

solutions in maximal supergravity and N = 2 Maxwell-Einstein supergravity theories

(MESGT) in five and four dimensions given in [30] suggested that four dimensional U-

duality may act as a spectrum generating conformal symmetry in five dimensions [30, 14].

Furthermore, the work of [14] suggested that the 3 dimensional U duality group E8(8) of

maximal supergravity must similarly act as a spectrum generating quasiconformal symme-

1For SU(1, 1) = SL(2,R) = Sp(2,R) the quasiconformal realization reduces to conformal realization.
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try group in the charge space of BPS black hole solutions in four dimensions extended by

an extra coordinate which was interpreted as black hole entropy. This extends naturally to

3-dimensional U-duality groups of N = 2 MESGTs acting as spectrum generating quasi-

conformal symmetry groups in four dimensions [31]. More recently it was conjectured that

the indexed degeneracies of certain N = 8 and N = 4 BPS black holes are given by some

automorphic forms related to the minimal unitary representations of the corresponding 3

dimensional U-duality groups [32].

Motivated by the above mentioned results and conjectures stationary and spherically

symmetric solutions of N ≥ 2 supergravities with symmetric scalar manifolds were re-

cently studied in [33]. By utilizing the equivalence of four dimensional attractor flow

with the geodesic motion on the scalar manifold of the corresponding three dimensional

theory the authors of [33] quantized the radial attractor flow, and argued that the three-

dimensional U-duality groups must act as spectrum generating symmetry for BPS black

hole degeneracies in 4 dimensions. They furthermore suggested that these degenera-

cies may be related to Fourier coefficients of certain modular forms of the 3-dimensional

U-duality groups, in particular those associated with their minimal unitary representa-

tions.

The quasiconformal realizations of noncompact groups represent natural extensions

of generalized conformal realizations of some of their subgroups and were studied from

a spacetime point of view in [17]. The authors of [17] studied in detail the quasiconfor-

mal groups of generalized spacetimes defined by Jordan algebras of degree three. The

generic Jordan family of Euclidean Jordan algebras of degree three describe extensions of

the Minkowskian spacetimes by an extra “dilatonic” coordinate, whose rotation, Lorentz

and conformal groups are SO(d − 1),SO(d − 1, 1) × SO(1, 1) and SO(d, 2) × SO(2, 1), re-

spectively. The generalized spacetimes described by simple Euclidean Jordan algebras of

degree three correspond to extensions of Minkowskian spacetimes in the critical dimensions

(d = 3, 4, 6, 10) by a dilatonic and extra (2, 4, 8, 16) commuting spinorial coordinates, re-

spectively. Their rotation, Lorentz and conformal groups are those that occur in the first

three rows of the Magic Square [28]. For the generic Jordan family the quasiconformal

groups are SO(d + 2, 4). On the other hand, the quasiconformal groups of spacetimes de-

fined by simple Euclidean Jordan algebras of degree are F4(4), E6(2), E7(−5) and E8(−24).

The conformal subgroups of these quasiconformal groups are Sp(6,R), SU ∗(6), SO∗(12)

and E7(−25), respectively.

In this paper we give a unified construction of the minimal unitary representations

of noncompact groups by quantization of their geometric realizations as quasiconformal

groups and extend it to the construction of the minimal representations of noncompact

supergroups. In section 2 we explain the connection between minimal unitary represen-

tations of noncompact groups G and their unique para-quaternionic symmetric spaces of

the form G/H × SL(2,R), which was used in [21] to give a classification and minimal

realizations of the real forms of infinite dimensional nonlinear quasi-superconformal Lie

algebras that contain the Virasoro algebra as a subalgebra [20]. In section 3, using some

of the results of [21] we give a unified construction of the minimal unitary representations

of simple noncompact groups with H simple or Abelian. A degenerate limit of the uni-
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fied construction leads to the minimal unitary representations of the symplectic groups

Sp(2n,R), which is discussed in section 4. In sections 5, 6 ,7 and 8 we give the minimal

unitary realizations of SO(p+ 2, q + 2), SO∗(2n+ 4), SU(n+ 1,m + 1) and SL(n+ 2,R),

respectively. In section 9 we extend our construction to the minimal realizations of non-

compact supergroups and present the unified construction of the minimal representations

of supergroups whose even subgroups are of the form H × SL(2,R) with H simple.The

construction of the minimal unitary realizations of O Sp(N |2,R) corresponds to a degen-

erate limit of the unified construction and is discussed in section 10, where we also give

the minimal realization of D(2, 1;α). Preliminary results of sections 3 and 9 appeared

in [29].

2. Minimal unitary representations of noncompact groups and para-

quaternionic symmetric spaces

The minimal dimensions for simple non-compact groups were determined by Joseph [2, 3].

For a particular noncompact group G the minimal dimension ` can be found by considering

the 5-graded decomposition of its Lie algebra g, determined by a distinguished sl(2,R)

subalgebra, of the form

g = g−2 ⊕ g−1 ⊕
(
g0 ⊕∆

)
⊕ g+1 ⊕ g+2 (2.1)

where g±2 are 1-dimensional subspaces each, and ∆ is the dilatation generator that deter-

mines the five grading. The generators belonging to the subspace g−2 ⊕∆⊕ g+2 form the

sl(2 ,R) subalgebra in question. The minimal dimension ` is simply

` =
1

2
dim

(
g+1
)

+ 1 (2.2)

If we denote the subgroup generated by the grade zero subalgebra g0 as H, then the

quotient

G

H × SL(2,R)
(2.3)

is a para-quaternionic symmetric space in the terminology of [19]. Our goal in this paper

is to complete the construction of the minimal unitary representations of all such non-

compact groups by quantization of their quasiconformal realizations. Remarkably, the

para-quaternionic symmetric spaces arose earlier in the classification [21] of infinite di-

mensional nonlinear quasi-superconformal Lie algebras that contain the Virasoro algebra

as a subalgebra.2 Below we list all simple noncompact groups G of this type and their

subgroups H [21]:

2These infinite dimensional non-linear algebras were proposed as symmetry algebras that unify pertur-

bative (Virasoro) and non-perturbative (U-duality) symmetries [22].

– 4 –



J
H
E
P
0
9
(
2
0
0
6
)
0
5
0

G H

SU(m,n) U(m− 1, n− 1)

SL(n,R) GL(n− 2,R)

SO(n,m) SO(n− 2,m− 2)× SU(1, 1)

SO∗(2n) SO∗(2n− 4)× SU(2)

Sp(2n,R) Sp(2n− 2,R)

E6(6) SL(6,R)

E6(2) SU(3, 3)

E6(−14) SU(5, 1)

E7(7) SO(6, 6)

E7(−5) SO∗(12)

E7(−25) SO(10, 2)

E8(8) E7(7)

E8(−24) E7(−25)

F4(4) Sp(6,R)

G2(2) SU(1, 1)

The minimal unitary representations of the exceptional groups (F4, E6, E7, E8) and of

SO(n, 4) as well as the corresponding quasiconformal realizations were given in [16, 15, 17].

3. Unified construction of the minimal unitary realizations of non-compact

groups with H simple or abelian

Consider the 5-graded decomposition of the Lie algebra g of G

g−2 ⊕ g−1 ⊕
(
g0 ⊕∆

)
⊕ g+1 ⊕ g+2

Let Ja denote generators of the Lie algebra g0 of H
[
Ja , J b

]
= fabcJ

c (3.1a)

where a, b, . . . = 1, . . . D and let ρ denote the symplectic representation by which g0 acts

on g±1

[Ja , Eα] = (λa)αβE
β [Ja , Fα] = (λa)αβF

β (3.1b)

where Eα, α, β, . . . = 1, . . . , N = dim(ρ) are generators that span the subspace g−1

[
Eα , Eβ

]
= 2ΩαβE (3.1c)

and Fα are generators that span g+1

[
Fα , F β

]
= 2ΩαβF (3.1d)

and Ωαβ is the symplectic invariant “metric” of the representation ρ. The negative grade

generators form a Heisenberg subalgebra since

[Eα, E] = 0 (3.1e)
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with the grade -2 generator E acting as its central charge. Similarly the positive grade

generators form a Heisenberg algebra with the grade +2 generator F acting as its central

charge. The remaining nonvanishing commutation relations of g are

Fα = [Eα , F ]

Eα = [E ,Fα]
[
Eα, F β

]
= −Ωαβ∆ + ελαβa Ja

[∆, Eα] = −Eα

[∆, Fα] = Fα

[∆, E] = −2E

[∆, F ] = 2F

(3.1f)

where ∆ is the generator that determines the five grading and ε is a parameter to be

determined.

We shall realize the generators using bosonic oscillators ξα satisfying the canonical

commutation relations [
ξα , ξβ

]
= Ωαβ (3.2)

The grade -1, -2 generators and those of H can be realized easily as

E =
1

2
y2 Eα = y ξα Ja = −1

2
λaαβξ

αξβ (3.3)

where y, at this point, is an extra “coordinate” such that 1
2y

2 acts as the central charge of

the Heisenberg algebra formed by the negative grade generators.

Now there may exist different real forms of G with different subgroups H. For reasons

that will become obvious we shall assume that a real form of G exists for which H is simple.

We shall follow the conventions of [21] throughout this paper except for the occasional use

of Cartan labeling of simple Lie algebras whenever we are not considering specific real

forms.

The quadratic Casimir operator of the Lie algebra g0 of H is

C2

(
g0
)

= ηabJ
aJ b (3.4)

where ηab is the Killing metric of H. The minimal realizations given in [16, 15, 17] and the

results of [21] suggest an Ansatz for the grade +2 generator F of the form

F =
1

2
p2 + κy−2 (C2 + C) (3.5)

where p is the momentum conjugate to the coordinate y

[y, p] = i (3.6)

and κ and C are some constants to be determined later. This implies then

Fα = [Eα, F ] = ip ξα + κy−1 [ξα , C2]

= ip ξα − κy−1
[
2 (λa)αβξ

βJa + Cρ ξ
α
]

(3.7)

where Cρ is the eigenvalue of the second order Casimir of H in the representation ρ.3

3Note that the indices α, β, . . . are raised and lowered with the antisymmetric symplectic metric Ωαβ =

−Ωβα that satisfies ΩαβΩγβ = δαβ and V α = ΩαβVβ, and Vα = V βΩβα. In particular, we have V αWα =

−VαWα.
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We choose the normalization of the representation matrices λ as in [20, 21]

λa,αβλ γ
a δ − λa,γαλ

β
a δ = − Cρ

N + 1

(
Ωαβδγδ − 2Ωβγδαδ + Ωγαδβδ

)
, (3.8)

which implies

λaαβλ
βγ
a = −Cρδγα (3.9)

The unknown constants in our Ansatz will be determined by requiring that generators

satisfy the commutation relations (3.1) of the Lie algebra g. We first consider commutators

of elements of g1 and g−1

[
Eα , F β

]
= i (y p) Ωαβ − ξβ ξα + κ

[
ξα ,

[
ξβ , C2

]]
(3.10)

which, upon using the identity,

[ξα , C2] = −2 (λa)αβξ
βJa − Cρ ξ

α (3.11)

leads to

[
Eα , F β

]
= −∆Ωαβ +

{
3κCρ
1 +N

− 1

2

}(
ξαξβ + ξβξα

)
− 6κ (λa)αβ Ja (3.12)

where ∆ = − i
2 (yp+ py). Now the bilinears

(
ξαξβ + ξβξα

)
generate the Lie algebra of

cN/2 (sp (N)) under commutation. Hence for those Lie algebras g whose subalgebras g0 are

different from cN/2 closure requires that the coefficient of the second term vanish

3κCρ
1 +N

− 1

2
= 0 (3.13)

For Lie algebras g whose subalgebras g0 are of type cN/2 we have

(λa)
αβ Ja ≈ ξαξβ + ξβξα

Hence we do not get any constraints on κ from the above commutation relation.

Next, let us compute the commutator
[
Fα , F β

]
=

κ

y2

(
−ξα

[
ξβ , C2

]
+ ξβ [ξα , C2] + κ

[
[ξα , C2] ,

[
ξβ , C2

]])
− p2Ωαβ (3.14)

Using (3.8), (3.11) we write the terms linear in κ on the right hand side as

κ

y2

(
−ξα

[
ξβ , C2

]
+ ξβ [ξα , C2]

)
=

κ

y2

(
CρΩ

αβ+2
(
ξα(λa)βγ − ξβ(λa)αγ

)
ξγJa

)
. (3.15)

The terms quadratic in κ on the right hand side gives

κ
[
[ξα , C2] ,

[
ξβ , C2

]]
=

12κCρ
N + 1

(
ξα(λa)βγ − ξβ(λa)αγ

)
ξγJa − κC2

ρΩαβ

+4κ

(
3
(
λbλa

)αβ
JaJb − 2

(
λbλa

)βα
JaJb + fab

c(λa)αµ

(
λb
)β

ν
ξµξνJc

)

– 7 –
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Using these two expressions above (3.14) becomes

[
Fα , F β

]
= −2

(
1

2
p2 +

1

y2

(
κ2

2
C2
ρ −

κ

2
Cρ

))
Ωαβ

+
4κ

y2

(
ξα(λa)βγ − ξβ(λa)αγ

)
ξγJa

+
4κ2

y2

(
3
(
λbλa

)αβ
JaJb − 2

(
λbλa

)βα
JaJb + fab

c(λa)αµ

(
λb
)β

ν
ξµξνJc

)

(3.16)

Now the right hand side of (3.16) must equal 2ΩαβF with

F =
1

2
p2 + κy−2 (C2 + C)

per our Ansatz. Contracting the right hand side of (3.16) with Ωβα we get

−N
(
p2 +

1

y2

(
κ2C2

ρ − κCρ
))
− 1

y2
κ
(
−16 + 20κiρ`

2 − 4κCadj

)
C2 (3.17)

where iρ is the Dynkin index of the representation ρ of H and Cadj is the eigenvalue of the

second order Casimir in the adjoint of H. To obtain this result one uses the fact that

λaαβλ
b,αβ = −iρ`2ηab

where ` is the length of the longest root of H.4 Using

Cadj = −`2h∨ (3.18)

where h∨ is the dual Coxeter number of g0 subalgebra of g, the closure then requires

(
−8 + 10κiρ`

2 + 2κh∨`2
)

= N (3.19)

Equations (3.13) and (3.19), combined with

iρ`
2 =

N

D
Cρ (3.20)

imply
h∨

iρ
=

3D

N(N + 1)
(N + 8)− 5 (3.21)

The validity of the above expression can be verified explicitly by comparing with table

1 of [21], relevant part of which is collected in table 1 for convenience. Furthermore, it was

shown in [21] that all the groups and the corresponding symplectic representations listed

in the above table satisfy the equation

h∨ = 2iρ

(
D

N
+

3D

N(1 +N)
− 1

)
(3.22)

4The length squared `2 of the longest root is normalized such that it is 2 for the simply laced algebras, 4

for Bn, Cn and F4 and 6 for G2. The iρ, Cρ and ` are related by iρ =
NCρ
D`2

where D = dim(H) = dim(g0).
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g0 D h∨ N = dimρ iρ

cn n(2n+ 1) n+ 1 2n 1
2

a5 35 6 20 3

d6 66 10 32 4

e7 133 18 56 6

c3 21 4 14 5
2

a1 3 2 4 5

Table 1: The list of grade zero subalgebras g0 with dual Coxeter number h∨ that are simple and

with irreducible action ρ on grade +1 subspace. iρ is the Dynkin index of the representation ρ.

which was obtained as a consistency condition for the existence of certain class of infinite

dimensional nonlinear quasi-superconformal algebras. Comparing this equation with the

equation (3.21) we see that they are consistent with each other if

D =
3N (N + 1)

N + 16
(3.23)

Requirement of [F , F α] = 0 leads to the condition

ξα (C2 + C) + (C2 + C) ξα + κ [C2 , [ξ
α , C2]] = 0 (3.24)

Using (3.11) and [C2 , J
a] = 0 we arrive at

2 ξα (C2 + C) + 2 (1− κCρ)Cρξα + 2 (1− κCρ) (λa)αβ ξ
βJa

−4κ
(
λaλb

)α
β
ξβJbJa = 0

(3.25)

In order to extract restrictions on g implied by the above equation we contract it with

ξγΩγα and obtain
h∨

iρ
=

D

N(N + 1)
(N − 8) + 1 . (3.26)

It agrees with (3.21) provided (3.23) holds true. Making use of

N = 2(g∨ − 2)

where g∨ is the dual Coxeter number of the Lie algebra g and (3.23) we obtain

dim (g) = 2 + 2N + 1 + dim
(
g0
)

= 1 + 2 (N + 1) +D = 2
(g∨ + 1) (5g∨ − 6)

g∨ + 6
(3.27)

Equation (3.24) and the requirement of the right hand side of (3.16) to equal to 2ΩαβF

imply restriction on matrices λa for which (3.21) and (3.26) are only necessary conditions.

We expect these conditions to be derivable from the identities satisfied by the corresponding

Freudenthal triple systems [36] that underlie the quasiconformal actions and the minimal

realizations [14, 17].

By going through the list of simple Lie algebras [25] collected for convenience in table 2

we see that the equation (3.23) is valid only for the Lie algebras of simple groups A1, A2,

– 9 –



J
H
E
P
0
9
(
2
0
0
6
)
0
5
0

g dim(g) g∨ Eqtn. (3.27) holds ?

an n2 + 2n n+ 1 for a1 and a2 only

bn 2n2 + n 2n− 1 no

cn 2n2 + n n+ 1 no

dn 2n2 − n 2n− 2 for d4 only

e6 78 12 yes

e7 133 18 yes

e8 248 30 yes

f4 52 9 yes

g2 14 4 yes

Table 2: Dimensions and dual Coxeter numbers of simple Lie algebras. In order for the Lie algebra

to admit a non-trivial 5-graded decomposition its dimension must be greater than 6. This rules out

sl(2) for which (3.27) also holds.

G2, D4, F4,E6, E7 and E8. For A1 our realization reduces simply to the conformal realiza-

tion. With the exception of D4, what these groups have in common is the fact that their

subgroups H are either simple or one dimensional Abelian as expected by the consistency

with our Ansatz. The reason our Ansatz also covers the case of D4 has to do with its

unique properties. The subalgebra g0 of d4 is the direct sum of three copies of a1

g0 = a1 ⊕ a1 ⊕ a1

The eigenvalues of the quadratic Casimirs of these subalgebras a1 as well as their Dynkin

indices in the representation ρ coincide as required by the consistency with our Ansatz.

These groups appear in the last row of the so-called Magic Triangle [26] which extends the

Magic Square of Freudenthal, Rozenfeld and Tits [28].

There is, in addition, an infinite family of non-compact groups for which H is sim-

ple, namely the noncompact symplectic groups Sp(2n + 2,R) with dim ρ = 2n and H =

Sp(2n,R). However, as remarked above, the constraint (3.13) and hence the equation (3.23)

do not follow from our Ansatz for the symplectic groups. The quartic invariant becomes

degenerate for symplectic groups and the minimal unitary realizations reduce to free boson

construction of the singleton representations for these groups as will be discussed in the

next section.

The minimal unitary realizations of noncompact groups appearing in the Magic Trian-

gle [28, 26] can be obtained by consistent truncation of the minimal unitary realizations of

the groups appearing in its last row [15, 14, 17]. We should stress that there are different

real forms of the groups appearing in the Magic Square or its straightforward extension to

the Magic Triangle. Different real forms in our unified construction correspond to different

hermiticity conditions on the bosonic oscillators ξα [15]. After specifying the hermiticity

properties of the oscillators ξα one goes to a Hermitian (anti-hermitian) basis of the Lie

algebra g with purely imaginary (real) structure constants to calculate the Killing metric

which determines the real form corresponding to the minimal unitary realization.

– 10 –



J
H
E
P
0
9
(
2
0
0
6
)
0
5
0

The quadratic Casimir operator of the Lie algebra constructed in a unified manner

above is given by

C2 (g) = JaJa +
2Cρ
N + 1

(
1

2
∆2 +EF + FE

)
− Cρ
N + 1

Ωαβ

(
EαF β + F βEα

)
(3.28)

which, upon using (3.13) and the following identities

1

2
∆2 +EF + FE = κ (JaJa + C)− 3

8

Ωαβ

(
EαF β + F βEα

)
= 8κJaJa +

N

2
+ κCρN

(3.29)

that follow from our Ansatz, reduces to a c-number

C2 (g) = C

(
8κCρ
N + 1

− 1

)
− 3

4

Cρ
N + 1

− N

2

Cρ
N + 1

− κC2
ρN

N + 1

=(using eq.(3.13)) −
Cρ
36

(N + 4) (5N + 8)

N + 1

(3.30)

as required by irreducibility. We should note that this result agrees with explicit calcula-

tions for the Lie algebras of the Magic Square in [15]. In the normalization chosen there

κ = 2 and hence 12Cρ = N + 1. Then, using N = 2g∨ − 4 we get

C2 (g) = − 1

108

(
5g∨ − 6

)
g∨. (3.31)

4. The minimal unitary representations of Sp (2n+ 2,R)

The Lie algebra of Sp (2n+ 2,R) has a 5-grading of the form

sp (2n+ 2,R) = E ⊕Eα ⊕ (sp (2n,R)⊕∆)⊕ F α ⊕ F (4.1)

where Eα = yξα, and E = 1
2y

2. Generators of the grade zero subalgebra g0 = sp (2n,R)

are given simply by the symmetrized bilinears ( modulo normalization)

−2 (λa)
αβ Ja = ξαξβ + ξβξα (4.2)

which is simply the singleton ( metaplectic) realization of sp(2n,R). The quadratic Casimir

of sp (2n,R) in the singleton realizaton is simply a c-number. As stated in the previous

section the constraint equation (3.13) that follow from the commutation relations [Eα, F β ]

can not be imposed in the case of symplectic Lie algebras Sp (2n+ 2,R). However the

equation (3.24) that follows from our Ansatz requires that C2 + C = 0 or κ = 0 for the

symplectic Lie algebras Sp (2n+ 2,R). In other words F = 1
2p

2. Thus

Fα = [Eα, F ] = ipξα (4.3)[
Eα, F β

]
= i (yp) Ωαβ − ξβξα

= − i
2

∆− 1

2
(ξαξβ + ξβξα) (4.4)
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Thus the minimal unitary realization of the symplectic group Sp(2n + 2,R) obtained by

quantization of its quasiconformal realization is simply the singleton realization in terms

bilinears of the 2n + 2 oscillators (annihilation and creation operators) (ξα, y, p). The

quadratic Casimir of sp (2n+ 2,R) is also a c-number.

That the quadratic Casimir is a c-number is only a necessary requirement for the

irreducibility of the corresponding represenation. For the above singleton realization the

entire Fock space of all the oscillators decompose into the direct sum of the two inequivalent

singleton representations that have the same eigenvalue of the quadratic Casimir. They

are both unitary lowest weight representations. By choosing a definite polarization one can

define n+ 1 annihilation operators

a0 =
1√
2

(y + ip)

ai =
1√
2

(ξi + iξn+i) i = 1, 2, . . . , n

and n+ 1 creation operators

a0 =
1√
2

(y − ip)

ai =
1√
2

(ξi − iξn+i)

in terms of the (n+1) coordinates and (n+1) momenta. The vacuum vector |0〉 annihilated

by all the annihilation operators

a0|0〉 = ai|0〉 = 0

is the lowest weight vector of the “scalar” singleton irrep of Sp(2n+2,R) and (n+1) vectors

a0|0〉, ai|0〉

form the lowest K-vector of the other singleton irrep of Sp(2n+ 2,R). In other words the

lowest K vector of the scalar singleton is an SU(n+ 1) scalar, while the lowest K-vector of

the other singleton irrep is a vector of SU(n + 1) subgroup of Sp(2n + 2,R). Both lowest

K-vectors carry a nonzero U(1) charge.

The reason for the reduction of the minimal unitary realizations of the Lie algebras

of symplectic groups Sp(2n + 2,R) to bilinears, and hence to a free boson construction,

is the fact that there do not exist any nontrivial quartic invariant of Sp(2n,R) defined by

an irreducible symmetric tensor in the fundamental representation 2n. We have only the

skew symmetric symplectic invariant tensor Ωαβ in the fundamental representation, which

when contracted with ξαξβ gives a c-number.

In the light of the above results one may wonder how the quasi-conformal realization

of sp (2n+ 2,R) can be made manifest. Before quantisation we have 2n + 1 coordinates

X = (Xα, x) on which we realize sp (2n+ 2,R):

N (X) = I4 (Xα)− x2 (4.5)
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since I4 (Xα) = 0. With the “twisted” difference vector defined as [14]

δ (X,Y) = (Xα − Y α, x− y + 〈X,Y 〉) (4.6)

The equation defining the generalized lightcone

N (δ (X,Y)) = 0

then reduces to

x− y + 〈X,Y 〉 = 0 (4.7)

where 〈X,Y 〉 = ΩαβX
αY β. By reinterpreting the coordinates (Xα, x) and (Y α, y) as

projective coordinates in 2n+2 dimensional space

x =
ξ0

ξn+1

Xα =
ξα

ξn+1

y =
η0

ηn+1

Y α =
ηα

ηn+1

the above equation for the light cone can be written in the form

ξ0ηn+1 − η0ξn+1 + Ωαβξ
αηβ = 0

which is manifestly invariant under Sp(2n+ 2,R).

5. Minimal unitary realizations of the quasiconformal groups

SO(p+ 2, q + 2)

In our earlier work [17] we constructed the minimal unitary representations of SO (d+ 2, 4)

obtained by quantization of their realizations as quasiconformal groups. That construction

carries over in a straightforward manner to the other real forms SO (p+ 2, q + 2) which we

give in this section. They were studied also in [34] using the quasiconformal approach and

in [35] by other methods.

Now the relevant subgroup for the minimal unitary realization is

SO(p, q)× SO(2, 2) ⊂ SO(p+ 2, q + 2) (5.1)

where

SO(2, 2) = Sl(2,R) × Sl(2,R) = Sp(2,R)× Sp(2,R) (5.2)

and one of factors above can be identified with the distinguished Sl (2,R) subgroup. The

relevant 5-grading of the Lie algebra of SO(p+ 2, q + 2) is then given as

so(p+ 2, q + 2) = g−2 ⊕ g−1 ⊕ (so(p, q)⊕ sp (2,R)⊕∆)⊕ g+1 ⊕ g+2 (5.3)
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where grade ±1 subspaces transform in the [(p + q), 2] dimensional representation of

SO(p, q)× Sl(2,R).

Let Xµ and Pµ be canonical coordinates and momenta in R(p,q):

[Xµ, Pν ] = iδµν (5.4)

Also let x be an additional “cocycle” coordinate and p be its conjugate momentum:

[x, p] = i (5.5)

They are taken to satisfy the following Hermiticity conditions:

(Xµ)† = ηµνX
ν (Pµ)† = ηµνPν p† = p x† = x (5.6)

where ηµν is the SO(p, q) invariant metric. The subgroup H of SO(p+2, q+2) is SO(p, q)×
Sp(2,R)J whose generators we will denote as (Mµν , J±, J0). The grade −1 generators will

be denoted as (Uµ, V µ) and the grade −2 generator as K−. The generators of H, its 4-th

order invariant I4 and the negative grade generators are realized as follows:

Mµν = iηµρX
ρPν − iηνρXρPµ

Uµ = xPµ V µ = xXµ

K− =
1

2
x2

J0 =
1

2
(XµPµ + PµX

µ)

J− = XµXνηµν

J+ = PµPνη
µν

I4 = (XµXνηµν) (PµPνη
µν) + (PµPνη

µν) (XµXνηµν)

− (XµPµ) (PνX
ν)− (PµX

µ) (XνPν)

(5.7)

where ηµν is the flat metric with signature (p, q).

It is easy to verify that the generators Mµν and J0,± satisfy the commutation relations

of so (p, q)⊕ sp (2,R)

[Mµν ,Mρτ ] = ηνρMµτ − ηµρMντ + ηµτMνρ − ηντMµρ

[J0, J±] = ±2iJ± [J−, J+] = 4iJ0

(5.8)

under which coordinates Xµ and momenta Pµ transform as SO (p, q) vectors and form

doublets of the symplectic group Sp(2,R)J :

[J0, V
µ] = −iV µ

[J0, Uµ] = +iUµ

[J−, V µ] = 0

[J−, Uµ] = 2iηµνV
ν

[J+, V
µ] = −2iηµνUν

[J+, Uµ] = 0
(5.9)

The generators in the subspace g−1 ⊕ g−2 form a Heisenberg algebra

[V µ, Uν ] = 2iδµνK− . (5.10)

with K− playing the role of central charge.

Using the quartic invariant we define the grade +2 generator as

K+ =
1

2
p2 +

1

4 y2

(
I4 +

(p+ q − 2)2 + 3

2

)
(5.11)
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Then the grade +1 generators are obtained by commutation relations

Ṽ µ = −i [V µ,K+] Ũµ = −i [Uµ,K+] (5.12)

which explicitly read as follows

Ṽ µ = pXµ +
1

2
x−1

(
PνX

λXρ +XλXρPν

)
ηµνηλρ

− 1

4
x−1 (Xµ (XνPν + PνX

ν) + (XνPν + PνX
ν)Xµ)

Ũµ = pPµ −
1

2
x−1 (XνPλPρ + PλPρX

ν) ηµνη
λρ

+
1

4
x−1 (Pµ (XνPν + PνX

ν) + (XνPν + PνX
ν)Pµ) .

(5.13)

Then one finds that the generators in g+1 ⊕ g+2 subspace form an Heisenberg algebra as

well [
Ṽ µ, Ũν

]
= 2iδµνK+ V µ = i

[
Ṽ µ,K−

]
Uµ = i

[
Ũµ,K−

]
. (5.14)

Commutators
[
g−1, g+1

]
close into g0 as follows

[
Uµ, Ũν

]
= iηµνJ−

[
V µ, Ṽ ν

]
= iηµνJ+

[
V µ, Ũν

]
= 2ηµρMρν + iδµν (J0 + ∆)

[
Uµ, Ṽ

ν
]

= −2ηνρMµρ + iδνµ (J0 −∆)

(5.15)

where ∆ is the generator that determines the 5-grading

∆ =
1

2
(xp+ px) (5.16)

such that

[K−,K+] = i∆ [∆,K±] = ±2iK± (5.17)

[∆, Uµ] = −iUµ [∆, V µ] = −iV µ
[
∆, Ũµ

]
= iŨµ

[
∆, Ṽ µ

]
= iṼ µ (5.18)

The quadratic Casimir operators of subalgebras so (p, q), sp (2,R)J of grade zero subspace

and sp (2,R)K generated by K± and ∆ are

MµνM
µν = −I4 − 2 (p+ q)

J−J+ + J+J− − 2 (J0)2 = I4 +
1

2
(p+ q)2

K−K+ +K+K− −
1

2
∆2 =

1

4
I4 +

1

8
(p+ q)2

(5.19)

Note that they all reduce to I4 modulo some additive and multiplicative constants. Noting

also that (
UµṼ

µ + Ṽ µUµ − V µŨµ − ŨµV µ
)

= 2I4 + (p+ q) (p+ q + 4) (5.20)
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we conclude that there exists a family of degree 2 polynomials in the enveloping algebra

of so (p+ 2, q + 2) that degenerate to a c-number for the minimal unitary realization, in

accordance with Joseph’s theorem [18]:

MµνM
µν + κ1

(
J−J+ + J+J− − 2 (J0)2

)
+ 4κ2

(
K−K+ +K+K− −

1

2
∆2

)

− 1

2
(κ1 + κ2 − 1)

(
UµṼ

µ + Ṽ µUµ − V µŨµ − ŨµV µ
)

=
1

2
(p+ q) (p+ q − 4 (κ1 + κ2))

(5.21)

The quadratic Casimir of so (p+ 2, q + 2) corresponds to the choice 2κ1 = 2κ2 = −1

in (5.21). Hence the eigenvalue of the quadratic Casimir for the minimal unitary represen-

tation is equal to 1
2 (p+ q) (p+ q + 4).

6. Minimal unitary realizations of the quasiconformal groups

SO∗(2n + 4)

The noncompact group SO∗(2n+4) is a subgroup of SL(2n+4,C) whose maximal compact

subgroup is U(n+ 2). We have the inclusions

SO∗(2n+ 4) ⊂ SU∗(2n+ 4) ⊂ SL(2n+ 4,C) (6.1)

As a matrix group SU∗(2n+ 4) is generated by matrices U belonging to SL(2n+ 4,C) that

satisfy

U J = JU∗ (6.2)

where J is a (2n+ 4)× (2n+ 4) matrix that is antisymmetric

JT = −J (6.3)

and whose square is the identity matrix

J2 = −I (6.4)

The matrices U belonging to the subgroup SO∗(2n+4) of SU ∗(2n+4) satisfy, in addition,

the condition

U U
T = I (6.5)

Thus SO∗(2n+4) leaves invariant both the Euclidean metric δIJ and the complex structure

JIJ = −JJI where I, J, . . . = 1, 2, . . . 2n + 4. Hence SO∗(2n + 4) is also a subgroup of the

complex rotation group SO(2n+ 4,C).

To obtain the 5-grading of the Lie algebra of SO∗(2n+4) so as to construct its minimal

unitary representation we need to consider its decomposition with respect to its subgroup

SO∗(2n)× SO∗(4) ⊂ SO∗(2n+ 4) (6.6)

where

SO∗(4) = SU(2) × SL(2,R) (6.7)
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The distinguished SL(2,R) subgroup can then be identified with the factor SL(2,R) above.

The corresponding 5-grading of the Lie algebra of SO∗(2n+ 4) is then

so∗(2n+ 4) = g−2 ⊕ g−1 ⊕ (so∗(2n)⊕ su(2)⊕∆)⊕ g+1 ⊕ g+2 (6.8)

where grade ±1 subspaces transform in the [2n, 2] dimensional representation of SO∗(2n)×
SU(2). Let Xµ and Pµ be canonical coordinates and momenta in R(2n):

[Xµ, Pν ] = iδµν (6.9)

They satisfy the Hermiticity conditions

(Xµ)† = JµνXν (6.10)

(Pµ)† = JµνPν (6.11)

Let x be an additional “cocycle” coordinate and p be its conjugate momentum:

[x, p] = i (6.12)

as in the previous section. The subgroup H is now SO∗(2n) × SU(2)J whose generators

are (Mµν , J±, J0). The grade −1 generators will be denoted as (Uµ, V µ) and the grade −2

generator as K− as in the previous section. The generators of H, its 4-th order invariant

I4 and the negative grade generators are realized as follows:

Mµν = iδµρX
ρPν − iδνρXρPµ

Uµ = xPµ V µ = xXµ

K− =
1

2
x2

J0 =
1

2
(XµPµ + PµX

µ)

J− = XµXµ

J+ = PµPµ

I4 = (XµXµ) (PνPν) + (PµPµ) (XνXν)

− (XµPµ) (PνX
ν)− (PµX

µ) (XνPν)

(6.13)

where δµν is the flat Euclidean metric in 2n dimensions.

It is easy to verify that the generators Mµν and J0,± satisfy the commutation relations

of so∗ (2n)⊕ su (2)J :

[Mµν ,Mρτ ] = δνρMµτ − δµρMντ + ηµτMνρ − ηντMµρ

[J0, J±] = ±2iJ± [J−, J+] = 4iJ0

(6.14)

under which coordinates Xµ (V µ) and momenta P µ (Uµ) transform as vectors of SO∗(2n)

and form doublets of SU(2):

[J0, V
µ] = −iV µ

[J0, Uµ] = +iUµ

[J−, V µ] = 0

[J−, Uµ] = 2iVµ

[J+, V
µ] = −2iU ν

[J+, Uµ] = 0
(6.15)

The generators in the subspace g−1 ⊕ g−2 form a Heisenberg algebra

[V µ, Uν ] = 2iδµνK− . (6.16)
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with K− playing the role of “~”.

Using the quartic invariant we define the grade +2 generator as

K+ =
1

2
p2 +

1

4 y2

(
I4 +

4(n− 1)2 + 3

2

)
(6.17)

Then the grade +1 generators are obtained by commutation relations

Ṽ µ = −i [V µ,K+] Ũµ = −i [Uµ,K+] (6.18)

which explicitly read as follows

Ṽ µ = pXµ +
1

2
x−1

(
PνX

λXρ +XλXρPν

)
ηµνηλρ

− 1

4
x−1 (Xµ (XνPν + PνX

ν) + (XνPν + PνX
ν)Xµ)

Ũµ = pPµ −
1

2
x−1 (XνPλPρ + PλPρX

ν) ηµνη
λρ

+
1

4
x−1 (Pµ (XνPν + PνX

ν) + (XνPν + PνX
ν)Pµ) .

(6.19)

Then one finds that the generators in g+1 ⊕ g+2 subspace form an Heisenberg algebra as

well [
Ṽ µ, Ũν

]
= 2iδµνK+ V µ = i

[
Ṽ µ,K−

]
Uµ = i

[
Ũµ,K−

]
. (6.20)

Commutators
[
g−1, g+1

]
close into g0 as follows

[
Uµ, Ũν

]
= iηµνJ−

[
V µ, Ṽ ν

]
= iηµνJ+

[
V µ, Ũν

]
= 2ηµρMρν + iδµν (J0 + ∆)

[
Uµ, Ṽ

ν
]

= −2ηνρMµρ + iδνµ (J0 −∆)

(6.21)

where ∆ is the generator that determines the 5-grading

∆ =
1

2
(xp+ px) (6.22)

such that

[K−,K+] = i∆ [∆,K±] = ±2iK± (6.23)

[∆, Uµ] = −iUµ [∆, V µ] = −iV µ
[
∆, Ũµ

]
= iŨµ

[
∆, Ṽ µ

]
= iṼ µ (6.24)

The quadratic Casimir operators of subalgebras so∗ (2n), su (2)J of grade zero subspace

and sp (2,R)K generated by K± and ∆ are

MµνM
µν = −I4 − 2 (p+ q)

J−J+ + J+J− − 2 (J0)2 = I4 +
1

2
(p+ q)2

K−K+ +K+K− −
1

2
∆2 =

1

4
I4 +

1

8
(p+ q)2

(6.25)
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Note that they all reduce to I4 modulo some additive and multiplicative constants. Noting

also that (
UµṼ

µ + Ṽ µUµ − V µŨµ − ŨµV µ
)

= 2I4 + (p+ q) (p+ q + 4) (6.26)

we conclude that there exists a family of degree 2 polynomials in the enveloping alge-

bra of so∗ (2n+ 4) that degenerate to a c-number for the minimal unitary realization, in

accordance with Joseph’s theorem [18]:

MµνM
µν + κ1

(
J−J+ + J+J− − 2 (J0)2

)
+ 4κ2

(
K−K+ +K+K− −

1

2
∆2

)

− 1

2
(κ1 + κ2 − 1)

(
UµṼ

µ + Ṽ µUµ − V µŨµ − ŨµV µ
)

= n (2n− 4 (κ1 + κ2 − 1))

(6.27)

The quadratic Casimir of so∗ (2n+ 4) corresponds to the choice 2κ1 = 2κ2 = −1

in (6.27). Hence the eigenvalue of the quadratic Casimir for the minimal unitary represen-

tation is equal to 2n (n+ 2).

7. Minimal unitary realizations of the quasiconformal groups

SU(n+1, m+1)

The Lie algebra su (n+ 1,m+ 1) admits the following five graded decomposition with

respect to its subalgebra su (n,m):

su (n+ 1,m+ 1) = 1⊕ 2(n+m)⊕ (su (n,m)⊕ u (1))⊕ 2(n+m)⊕ 1

It is realized by means of m+n pairs of creation and annihilation operators subject to the

following Hermiticity condition:

(ap)† = ηpqaq [aq, a
p] = δpq . (7.1)

Following the steps laid down in previous sections we define generators of H as bilinears

in creation and annihilation operators

Jpq = apaq −
1

m+ n
δpqa

rar (7.2a)

Negative grade generators are

E =
1

2
x2 Ep = xap Eq = xaq (7.2b)

The quartic invariant I4 is related to the quadratic Casimir of H simply

I4 =
2 (m+ n)

m+ n− 1
JpqJ

q
p +

1

2

(
(m+ n)2 − 1

)
(7.2c)

where the additive constant was determined such that

F =
1

2
p2 +

1

4

1

x2
I4 (7.2d)
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The positive grade g+1 generators are then found by commuting F with generators of g−1

F p = −i [Ep, F ] Fq = −i [Eq, F ] (7.2e)

The u(1) generator of grade 0 subalgebra is also bilinear in oscillators

U =
1

2
(apap + apa

p) (7.2f)

Quadratic Casimir of the algebra in this realization reduces to a c-number

C2 =− 1

6
JpqJ

q
p +

1

12
∆2 − 1

6
(EF + FE)− 1

12

m+ n+ 2

m+ n
U2

− i

12
(EpF

p + F pEp − FpEp −EpFp)

=
1

24
(m+ n+ 2) (m+ n+ 1)

(7.3)

Positive and negative grades generators transform in the (n + m)+1 ⊕ (n+m)−1 ⊕ 10

representation of H and satisfy

[Jpq, J
s
t] = δsqJ

p
t − δptJsq

[Jpq, E
s] = δsqE

p − 1

n+m
δpqE

s

[Jpq, F
s] = δsqF

p − 1

n+m
δpqF

s

[Jpq, Es] = −δpsEq +
1

n+m
δpqEs

[Jpq, Fs] = −δpsFq +
1

n+m
δpqFs

(7.4)

[U,Ep] = Ep [U,F p] = F p [U,Ep] = −Ep [U,Fp] = −Fp (7.5)

[∆, Ep] = −iEp [∆, Ep] = −iEp [∆, F p] = iF p [∆, Fp] = iFp (7.6)

[∆, F ] = 2iF [∆, E] = −2iE [E,F ] = i∆ (7.7)

The remaining non-zero commutation relations are as follows:

[Ep, E
q] = 2E [Fp, F

q] = 2F (7.8)

[Ep, Fq] = 2iJpq +
m+ n+ 2

m+ n
iδpqU − δpq∆

[Ep, F
q] = −2iJqp −

m+ n+ 2

m+ n
iδqpU − δpq∆

(7.9)

[F,Ep] = −iFp [F,Ep] = −iF p [E,Fp] = iEp [E,F p] = iEp (7.10)
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8. Minimal unitary realizations of the quasiconformal groups

SL(n+ 2,R)

The construction of the minimal unitary realization of the quasiconformal algebra sl(n +

2,R) traces the same steps as in the previous section. The five-graded decomposition is as

follows

sl (n+ 2,R) = 1⊕ (n⊕ ñ)⊕ (gl (n,R)⊕∆)⊕ (n⊕ ñ)⊕ 1

Since n ⊕ ñ is a direct sum of two inequivalent self-conjugate vector representations of

gl (n,R), we use coordinates Xµ and momenta Pµ as oscillator generators, where µ =

1, . . . , n, with canonical commutation relations:

[Xµ, Pν ] = iδµν (8.1)

Generators of gl (n,R)

Lµν =
i

2
(XµPν + PνX

µ) (8.2)

have the following commutation relations

[Lµν ,Lτ ρ] = δτ νLµρ − δµρLτ ν (8.3)

The one-dimensional center of the reductive algebra gl (n,R) is spanned by

U =
n∑

µ=1

Lµµ (8.4)

The quadratic Casimir of gl (n,R) is given simply as a trace of L2:

C2 (gl (n,R)) = LµνLνµ =
n

4
− (XµPµ) (PνX

ν) (8.5)

Generators of the negative grades

E =
1

2
x2 Eµ = xXµ Eν = xPν (8.6)

form the Heisenberg algebra

[Eµ, Eν ] = (2iE) δµν [E,Eµ] = 0

[Eν , Eµ] = 0 [E,Eµ] = 0 [Eν , Eµ] = 0
(8.7)

The generator of grade +2 subspace takes on the familiar form

F =
1

2
p2 +

1

2

1

x2
I4 =

1

2
p2 +

1

2

1

x2

(
n2 − 1

4
− (XµPµ) (PνX

ν)

)
(8.8a)

and leads to the following grade +1 generators

F µ = −i [xXµ, F ] = pXµ − 1

2

1

x
(Xµ (PνX

ν) + (XνPν)Xµ) (8.8b)
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Fµ = −i [xPµ, F ] = pPµ +
1

2

1

x
(Pµ (PνX

ν) + (XνPν)Pµ) (8.8c)

They form the dual Heisenberg algebra

[F µ, Fν ] = (2iF ) δµν [F, F µ] = 0

[F ν , F µ] = 0 [F, Fµ] = 0 [Fν , Fµ] = 0
(8.9)

Subspaces g±1 transform under gl (n,R) as n⊕ ñ each:

[Lµν , Eρ] = δρνE
µ [Lµν , Eρ] = −δµρEν

[Lµν , F ρ] = δρνF
µ [Lµν , Fρ] = −δµρFν

(8.10)

Other cross grade commutation relations read

[E,F µ] = iEµ [E,Fµ] = iEµ [F,Eµ] = −iF µ [F,Eµ] = −iFµ (8.11)

[E,F ] = i∆ [∆, E] = −2iE [∆, F ] = +2iF (8.12)

[∆, Eµ] = −iEµ [∆, Eµ] = −iEµ
[∆, F µ] = +iF µ [∆, Fµ] = +iFµ

(8.13)

[Eµ, F ν ] = 0 [Eµ, Fν ] = 0 (8.14)

[Eµ, Fν ] = 2Lµν + δµν (U + i∆)

[Eµ, F
ν ] = 2Lνµ + δνµ (U − i∆)

(8.15)

A short calculation verifies that the quadratic Casimir of sl (n+ 2,R) is

C2 = LµνLνµ +
1

2
(Lµµ) (Lνν)−

1

2
∆2 + (EF + FE)

+
1

2
(EµFµ + FµE

µ − F µEµ −EµF µ)

(8.16)

When evaluated on the quasi-conformal realization it reduces to c-number:

C2 = −1

4
(n+ 2) (n+ 1) (8.17)

Quadratic Casimir is just an element of the Joseph ideal as follows from relations below

LµνLνµ +
1

2
(Lµµ) (Lνν) =

3

2
I4 +

1

8
(3− 2n (n− 1)) (8.18)

−1

2
∆2 + (EF + FE) =

1

2
I4 −

3

8
(8.19)

1

2
(EµFµ + FµE

µ − F µEµ −EµF µ) = −2I4 − n+
1

2
(8.20)

Namely, any linear combination of the above three expressions collapses to a c-number

provided coefficients are matched as to cancel all I4.
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9. Minimal unitary realizations of Lie superalgebras

In this section we will extend the construction of the minimal unitary representations of Lie

groups obtained by quantization of their quasi conformal realizations to the construction

of the minimal representations of Lie superalgebras. In analogy with the Lie algebras we

consider 5-graded simple Lie superalgebras

g−2
B ⊕ g−1

F ⊕
(
g0 ⊕∆

)
B
⊕ g+1

F ⊕ g+2
B (9.1)

where g±2 are 1-dimensional subspaces each, and g−2 ⊕ ∆ ⊕ g+2 form sl(2 ,R). In this

paper we restrict ourselves to Lie superalgebras whose grade ±1 generators are all odd (

exhaustively). Let Ja denote generators of g0

[
Ja , J b

]
= fabcJ

c (9.2)

and let ρ denote the irreducible orthogonal representation with a definite Dynkin index by

which g0 acts on g±1

[Ja , Eα] = λaαβE
β [Ja , Fα] = λaαβF

β (9.3)

where Eα are odd generators that span g−1

{
Eα , Eβ

}
= Ωαβ

s E (9.4)

and Fα generators that span g+1

{
Fα , F β

}
= Ωαβ

s F (9.5)

and Ωαβ
s is now a symmetric invariant tensor. Hence negative (positive) grade subspace

form a super Heisenberg algebra. Due to 5-graded structure we can impose

Fα = [Eα , F ] Eα = [E ,Fα] (9.6)

Now we realize the generators using anti-commuting covariant oscillators ξα

{
ξα , ξβ

}
= Ωαβ

s (9.7)

plus an extra bosonic coordinate y and its conjugate momentum p. The non-positive grade

generators take the form 5

E =
1

2
y2 Eα = yξα Ja = −1

2
λaαβξ

αξβ (9.8)

The quadratic Casimir of g0 is taken to be

C2

(
g0
)

= ηabJ
aJ b (9.9)

5We are following conventions of [21] for superalgebras as well.
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and the grade +2 generator F is assumed to be of the form

F =
1

2
p2 + κy−2 (C2 + C) (9.10)

for some constants κ and C to be determined later. Commuting E with F α we obtain

Fα = ip ξα + κy−1 [ξα , C2] (9.11)

By inspection we have

[ξα , C2] = −2 (λa)αβξ
βJa + Cρ ξ

α (9.12)

and we shall use the following Ansatz [21]

(λa)βγ(λa)
α
δ + (λa)βα (λa)γδ =

Cρ
N − 1

(
Ωαβ
s Ωsγδ + δβγδ

α
δ − 2δαγδ

β
δ

)
(9.13)

to calculate the remaining super commutation relations.

For the anticommutators of grade +1 generators with grade -1 generators we get
{
Eα , F β

}
= i (y p) Ωαβ

s + ξβ ξα + κ
{
ξα ,

[
ξβ , C2

]}
(9.14)

{
Eα, F β

}
= −Ωαβ

s ∆− 6κ (λa)βα Ja +

(
3κCρ
N − 1

− 1

2

)(
ξβξα − ξαξβ

)
.

Now the bilinears
(
ξβξα − ξαξβ

)
on the right hand side generate the Lie algebra so(N).

Therefore, for those Lie superalgebras whose grade zero subalgebras g0 are different from

so(N) we must impose the constraint:

(
3κCρ
N − 1

− 1

2

)
(9.15)

For the anticommutators
{
Fα, F β

}
we get

{
Fα , F β

}
= −p2Ωαβ

s −
κ

y2

(
ξα
[
ξβ , C2

]
+ ξβ [ξα , C2]− κ

{
[ξα , C2] ,

[
ξβ , C2

]})
(9.16a)

{
Fα, F β

}
= −2FΩαβ

s = −2

(
p2

2
+

k

x2

(
1

2
κC2

ρ +
1

2
Cρ

))
Ωαβ
s

− κ

x2

(
−4
(
ξα(λa)

β
γ + ξβ(λa)

α
γ

)
ξγJa + 12κ (λaλb)

αβ J bJa

+8κ (λaλb)
βα J bJa − 4κ(λa)

α
δ(λb)

β
γξ
δξγfabcJ

c
)

(9.16b)

Taking the Ωs trace we obtain

N = 8− 10κiρ`
2 + 2κCadj 2C = κC2

ρ +Cρ (9.17)

Taking into account that
iρ`

2

Cρ
=
N

D
Cadj = +`2h∨ (9.18)
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and using (9.15) we obtain the following constraint equation for super quasiconformal

algebras, whose grade zero algebras are different from so(N):

h∨

iρ
= 5 +

3D

N(N − 1)
(N − 8) . (9.19)

Now we also have

[F, Fα] =
κ

x3
((C2 + C) ξα + ξα (C2 + C) + κ [C2, [ξ

α, C2]]) (9.20)

Hence the constraint imposed by the commutation relation [F, F α] = 0 is

2ξα (C2 + C)− Cρξα + (2 + 4κCρ) (λa)
α
β − κC2

ρξ
α − 4κ(λaλb)

α
βξ
βJ bJa = 0 (9.21)

which, upon contraction with ξγΩsγα leads to the following condition

h∨

iρ
= −1 +

D

N (N − 1)
(N + 8) . (9.22)

These two conditions (9.19) and (9.22) agree provided

D =
3N (N − 1)

16−N (9.23)

which is also the condition for them to agree with the equation

h∨ = 2iρ

(
D

N
+

3D

N(1−N)
+ 1

)
(9.24)

which was obtained as a consistency condition for the existence of certain class of infinite

dimensional nonlinear superconformal algebras [21, 20].

Looking at the tables of simple Lie superalgebras [21, 20] consistent with our Ansatz

we find the following simple Lie algebras g0 and their irreps of dimension N that satisfy

these conditions:
g0 D N

b3 21 8s
g2 14 7

(9.25)

These solutions correspond to the Lie superalgebras f(4) with even subalgebra b3⊕ sl(2,R)

and g(3) with even subalgebras g2 ⊕ sl(2,R).

We should note that the real forms with an even subgroup of the form H × SL(2,R),

with H simple, admit unitary representations only if H is compact.

10. Minimal representations of OSp (N |2,R) and D(2, 1;α)

10.1 O Sp(N |2,R)

For the Lie superalgebras osp(N |2,R) the constraint equation (9.15) does not follow from

the commutation relations and hence must not be imposed. In this case the bilinears(
ξβξα − ξαξβ

)
generate the Lie algebra of the even subgroup SO(N) ( super analog of
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Sp(2n,R). This realization corresponds to the singleton representation of SO(N) and its

quadratic Casimir is a c-number. As a consequence of this the Jacobi identities require

either that we set κ = 0 as in the case of the minimal realization of Sp(2n+ 2,R). Hence

the minimal realization reduces to a realization in terms of bilinears of fermionic and

bosonic oscillators. Thus the minimal unitary representations of O Sp(N |2,R) are simply

the supersingleton representations. The singleton supermultiplets of O Sp(N |2,R) were

studied in [27].

10.2 D(2, 1;σ)

There is a one parameter family of simple Lie superalgebras of the same dimension that

has no analog in the theory of ordinary Lie algebras. It is the family D (2, 1;σ). The

real forms of interest to us that admit unitary representations has the even subgroup

SU(2) × SU(2)× SL(2,R). It has a five grading of the form

D (2, 1;σ) = 1⊕ (2,2)⊕ (su (2)⊕ su (2)⊕∆)⊕ (2,2)⊕ 1 (10.1)

Let Xα,α̇ be 4 fermionic oscillators with canonical anti-commutation relations:

{
Xα,α̇, Xβ,β̇

}
= εαβεα̇β̇ (10.2)

where α, α̇, . . . denote the spinor indices of the two SU(2) factors. Let

E =
1

2
x2 Eα,α̇ = xXα,α̇ ∆ =

1

2
(xp+ px) (10.3)

and take the generators of g0 to be of the form

Mα,β
(1) =

1

4
εα̇β̇

(
Xα,α̇Xβ,β̇ +Xβ,β̇Xα,α̇

)

M α̇,β̇
(2) =

1

4
εαβ

(
Xα,α̇Xβ,β̇ +Xβ,β̇Xα,α̇

) (10.4)

They satisfy commutation relations of su(2) ⊕ su(2)

[
Mα,β

(1) ,M
λ,µ
(1)

]
= ελβMα,µ

(1) + εµαMβ,λ
(1)[

M α̇,β̇
(2) ,M

λ̇,µ̇
(2)

]
= ελ̇β̇M α̇,µ̇

(2) + εµ̇α̇M β̇,λ̇
(2)[

Mα,β
(1) ,M

λ̇,µ̇
(2)

]
= 0

(10.5)

Their quadratic Casimirs are

I4 = εαβελµM
αλ
(1)M

βµ
(1) J4 = εα̇β̇ελ̇µ̇M

α̇λ̇
(2)M

β̇µ̇
(2) (10.6)

Their sum is a c-number I4 + J4 = −3
2 . We use just one to construct generator of g+2

F =
1

2
p2 +

σ

x2

(
I4 +

3

4
+

9

8
σ

)
(10.7)
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and

Fαα̇ = −i
[
Eαα̇, F

]
(10.8)

Then [
Fαα̇, F ββ̇

]
= 2εαβεα̇β̇F

[
Fαα̇, F

]
= 0 (10.9)

Also [
Fαα̇, Eββ̇

]
= εαβεα̇β̇∆− (1− 3σ) iεαβM α̇β̇

(2) − (1 + 3σ) iεα̇β̇Mαβ
(1) (10.10)

The parameter σ is left undetermined by the Jacobi identities. For σ = 0 the superalgebra

D (2, 1, σ) is isomorphic to O Sp(4|2,R) and for the values σ = ± 1
3 it reduces to

SU (2|1, 1) × SU (2) .
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